Department of Biotechnology and Bioinformatics Centre, Barkatullah University, Bhopal, India
Bioremediation has the potential to reduce contaminated environment inexpensively yet effectively. But, the lack of information about the factors controlling the growth and metabolism in microorganisms in polluted environment often limits its implementation. However rapid advances in the understanding of bioremediation are on the horizon. With advances in biotechnology, bioremediation has become one of the most rapidly developing fields of environmental restoration, utilizing microorganisms to reduce the concentration and toxicity of various chemical pollutants, such as petroleum hydrocarbons. In this mini-review, the current state of the field is described and the role of synthetic biology in biotechnology in short and medium term is discussed. A number of bioremediation strategies have been developed to treat contaminated wastes and sites. Selecting the most appropriate strategy to treat a specific site can be guided by considering three basic principles: the amenability of the pollutant to biological transformation to less toxic products, the bioavailability of the contaminant to microorganisms and the opportunity for bioprocess optimization. By the recent advances on in-silico dimensions of bioremediation, it seems that the synthetic biology software will soon drive the wet-lab implementation at molecular level.
Key words: Bioremediation, Crude oil, Environment, Pollution.